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We present a reflection principle for an arbitrary biased continuous time ran- 
dom walk (comprising both Markovian and non-Markovian processes) in the 
presence of a reflecting barrier on semi-infinite and finite chains. For biased 
walks in the presence of a reflecting barrier this principle (which cannot be 
derived from combinatorics) is completely different from its familiar form in the 
presence of an absorbing barrier. The result enables us to obtain closed-form 
solutions for the Laplace transform of the conditional probability for biased 
walks on finite chains for all three combinations of absorbing and reflecting 
barriers at the two ends. An important application of these solutions is the 
calculation of various first-passage-time and escape-time distributions. We 
obtain exact results for the characteristic functions of various kinds of escape 
time distributions for biased random walks on finite chains. For processes 
governed by a long-tailed event-time distribution we show that the mean time of 
escape from bounded regions diverges even in the presence of a 
bias--suggesting, in a sense, the absence of true long-range diffusion in such 
"frozen" processes. 

KEY WORDS: Continuous time random walk; biased random walk; reflec- 
tion principle; escape time distribution. 

1. I N T R O D U C T I O N  

A classic and elegant way of solving random walk problems on finite or 
semi-infinite domains bounded by barriers is by means of the reflection 
principle, also known as the method of images in boundary value 
problems.(1 3) In this method, the solution to the more difficult problem of 
a random walk in the presence of barriers is expressed as a superposition of 
solutions in the absence of the barriers. In random walk theory, the proof 
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of the reflection principle involves combinatorics. The most familiar and 
widely used form (21 of the principle pertains to the case of symmetric or 
unbiased random walks on a semi-infinite chain with a reflecting or 
absorbing barrier at one end. The method is extended easily to symmetric 
random walks on finite chains with such barriers at both ends; the result is 
an infinite sum over solutions corresponding to the infinite chain, since the 
image set due to repeated reflections at the two barriers is an infinite one. 
For unsymmetric or biased random walks, the reflection principle in the 
case of an absorbing barrier is known. (2) However, there is no analogous 
result in the case of a reflecting barrier. A direct superposition of infinite- 
chain solutions as in the previous cases is incorrect. In fact, a simple reflec- 
tion principle does not exist in this case, basically because of the com- 
plexity in enumerating paths in a biased random walk with repeated reflec- 
tions at a point. 

In this paper, we present a form of reflection principle for a discrete 
biased random walk in the presence of a reflecting barrier. Our solution 
expresses the Laplace transform (with respect to time) of the conditional 
probability for a random walk on the set of positive integers { 1, 2,...} 
(0 being a perfectly reflecting barrier) as a linear combination of the trans- 
forms of solutions to the random walk problem on an infinite chain (the set 
of integers, Z), with a frequency-dependent coefficient. Reexpressed in 
terms of the original functions of time, this relation involves an integration 
over a memory kernel of the solution on Z, even in the case of a 
Markovian random walk. This is a consequence of the complexity in path 
enumeration mentioned earlier, and incidentally helps explain why a simple 
reflection principle cannot obtain when a reflecting barrier and bias are 
both present. Our results are derived for a general random walk governed 
by a renewal process with an arbitrary waiting time distribution--a "con- 
tinuous time random walk," or CTRW. They are therefore valid for a wide 
class of random walks, ranging from the simple Markovian one to walks 
that are highly correlated in time, including those "frozen" processes for 
which the mean residence time at a site is infinite. (These are of interest in 
the problem of transport in amorphous media.) 

In Section 2, we present the new reflection principle for a biased 
CTRW on the semi-infinite chain { 1, 2,... }, 0 being a reflecting barrier. (Its 
form in the continuum limit of Markovian diffusion with uniform drift on 
the half-line [0, ~ )  is also given.) Used in conjunction with the already 
known reflection principle for an absorbing barrier, this result enables one 
to arrive at compact exact solutions for the Laplace transform of the con- 
ditional probability for random walks on finite chains with all three com- 
binations of absorbing and reflecting barriers at the two ends. We list these 
in Section 3, and comment upon the structure of the different expressions. 
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Finally, in Section 4, we use our results to obtain various kinds of escape 
time distributions for biased CTRW's on finite chains, including the one 
corresponding to an arbitrary starting point for the walk. (In the particular 
case of a symmetric walk from the center of the chain, this distribution has 
been found in an earlier work. (a)) We show also that the mean escape time 
diverges for any CTRW governed by an interval density that has no 
moments, even if the walk is biased. 

2. T H E  R E F L E C T I O N  P R I N C I P L E  

2.1. B o u n d a r y  Cond i t ions  and K n o w n  Results  

For the sake of clarity, we write down first the reflection principle for 
unbiased and biased random walks in the already known cases. (~ 3~ Let 
P(m, t J mo) be the conditional probability of finding the random walker at 
the point (site) m at time t, given that the walker started from mo at t = 0 
on an infinite chain. Let Po(m, t Jmo) [-respectively, Po(m, t l mo)l 
represent the corresponding solution for a random walk on the set { 1, 2,... } 
in the presence of a reflecting (absorbing) barrier at 0--~the bar over the 
subscript in P0 serving to remind us of the termination of the walk once the 
barrier is reached. Consider a biased nearest-neighbor random walk in 
which the a priori probability of a jump to the right is p and that to the left 
is q = 1 - p .  For an absorbing barrier at 0, the boundary condition on the 
conditional probability is 

P0(0, t j m o ) = 0  (2.1a) 

for both biased (p :r q) and unbiased (p = q = 1/2) walks. This condition 
represents absorption as it ensures that the random walker and the image 
walker "annihilate" each other on coming together at the boundary, thus 
terminating the walk. In the physical context of diffusion, this is equivalent 
to a vanishing concentration of the diffusing species at the boundary. For a 
reflecting barrier at 0, the boundary condition is 

Po(0, t l m o ) = P o ( 1 ,  t l rno) when p=q=�89 (2.1b) 

i.e., for an unbiased walk; and 

pPo(O, tJmo)=qPo(1, tlmo) when p ~ q  (2.1c) 

i.e., for a biased walk. These conditions imply that the barrier is a perfect 
reflector. With reference to diffusion, these conditions ensure that the 
current (rather than the concentration itself) vanishes at the boundary; see 
also Eq. (2.16) below. 
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The reflection principle (2) yields the following relationships between 
P(m, t l too) and P6(m, t im0)  [respectively, Po(m, t L mo)]: 

With an absorbing barrier at 0, 

Po(m, t l mo)= P(m, t l mo)-  P(m, t [ -mo)  (unbiased, p = q = �89 

(2.2a) 
and 

Po(m, t l mo)= P(m, t[ mo)-(q/p)mO P(m, t l -mo)  (biased, p v L q) 

(2.2b) 
With a reflecting barrier at 0, 

Po(m, t lmo)=P(m,  t lmo)+P(m,  tl - m 0 +  1) (unbiased, p = q = �89 

(2.2c) 

There is no simple analog of Eq. (2.2b) for a reflecting barrier. It is evident 
that the relations in Eqs. (2.2) are valid as they stand for the corresponding 
Laplace transforms. Using certain symmetry properties of the infinite chain 
solution P(m, t lmo) (see below), it may be verified that the solutions in 
Eqs. (2.2) satisfy Eqs. (2.1a) and (2.1b). 

2.2. Cont inuous T ime Random Wa lk  on Z 

For a random walk by nearest-neighbor jumps on the infinite chain 2~, 
we have 

P(m, t l mo)= P ( m - m o ,  t l O)= ~ W(n, t) pn(m-mo) (2.3) 
n ~ Im moj 

where W(n, t) is the normalized probability for exactly n jumps to occur in 
the time interval t, and pn(m - mo) is the probability of reaching the point 
m from m 0 in n steps. This is of course given by 

when ( n -  Ir] )/2 is a nonnegative integer, and is zero in all other cases. Let 
W(n, t) be generated by an ordinary renewal process (2'5) which is specified 
by a normalized event-time density O(t). It can be shown in a 
straightforward manner (4,6) that the Laplace transform of W(n, t) is given 
by 

l~(n, u) = u-l(1 -- ~) [~(u) ]"  (2.5) 
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Inserting (2.4) and (2.5) in (2.3) and carrying out the summation yields the 
following result for the Laplace transform of the conditional probability: 

P(m, u [ mo)= (p/q)(m m0)/2 U 5(1 --4pq~2) -I/2 

x (1--~)II--(1-~4pq~---2)l/2"]lm-m~ (2.6) 
2(pq) 1/2 ~/ J 

Equation (2.6) is a special case of a general solution obtained earlier in 
another context (7) for an arbitrary biased CTRW with a first event-time 
distribution 0o(t) that is distinct from 0(t). In the present work 0o(t) has 
been taken to be the same as the interval density ~,(t), keeping in mind the 
main physical applications of CTRW's, namely, transport in amorphous 
media. (a) If need be, our results may be modified easily to cover the case 
when 00(t) is distinct from 0(t). 

In what follows, it is convenient to introduce the variable 

~(u) = arcsech [2(pq) 1/2 ~ ] (2.7) 

and to define also 

Then 

= �89 ln(p/q) (2.8) 

P(m, u I m0) = u 1(1 - ~) coth ~ exp[(m - m o ) ~ - [ m  -mol  ~.3 (2.9) 

2.3. The  Ref lec t ion  Pr inciple  for  Biased Wa lks  

As mentioned in the Introduction, a direct enumeration of paths in the 
presence of a reflecting barrier is not feasible when the walk is biased, 
because of the nature of the boundary condition (2.1c). Therefore a 
generalization of Eq. (2.2c) to cover the case p va q is not possible by com- 
binatorial methods. Thus, even for a Markovian walk--the original "ran- 
dom walk"--for which P(m, t ] mo) is essentially a modified Bessel function, 
we cannot wirte down a simple answer for Po(m, t [mo)  when p e q ,  
although we can do so for Po(m, t lmo). 

We present below a reflection principle that expresses Po(m, u l too) for 
an arbitrary, biased CTRW in terms of the corresponding infinite chain 
function P(m, u] too), by actually using an explicit solution for Po found in 
an entirely different context: In the study of hopping conductivity in a 
bond-percolation model in a constant external field, ~ an exact solution 
was obtained for the conditional probability PO, N(m, u lmo) of a biased 
random walk on the set {1, 2,..., ( N - 1 ) } ,  with reflecting barriers at 0 
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and N. The reflection princip!e is essentially deduced post facto by an 
inspection of the form of this solution (in the limit N ~ oo) vis-/t-vis that of 
P(m, u I mo). In Section 3, we use the principle so obtained to find easy 
solutions to related problems. 

Consider a biased CTRW on the set {1, 2 ..... ( N - 1 ) }  with perfectly 
reflecting barriers at 0 and N. Although the random walk is not Markovian 
except in the single instance of the exponential density ~p(t)= 
2Wexp(-2Wt), P(m, t[ mo) still obeys a master equation with a memory 
kernel. (1~ The algebraic equations obtained from this for the set of trans- 
forms Po,N(m, u lmo), where 1 ~<m, mo ~< N - 1  can be written in matrix 
form and solved exactly. (9) After a great deal of algebra, we obtain the 
result 

Po,u(m, u lm0) 

= e~(m m0- ll[sinh( N _  m > )4 - e ~ s i n h ( N -  m > - 1 ){] 

x [e = sinh m < { - sinh(m< - 1)~] [u sinh 4 s i n h ( N -  1)~] -~ (2.10) 

where m>=max(m, mo) and m<=min(m, mo). Letting N--+oe in 
Eq. (2.10), we obtain the following solution to the random walk problem 
on the semi-infinite chain { l, 2,.. } with a reflecting barrier at the site 0: 

e ~(m m~ 1)[e ~ sinh m< { - s i n h ( m <  - 1)~] 
P0(m, u mo)=  

u sinh 

(2.11) 

An inspection of Eq. (2.11) and a comparison with Eq. (2.9) reveals that 
this solution may be rewritten in the form 

Po(m, ulmo)=P(m, ulmo)+e 2'~~ -mo+l )  (2.12) 

where 

K(4, ~) = e ~ sinh �89 - ~)/sinh �89 + ~) (2.13) 

This is the desired "reflection principle." Comparing it with that of Eq. 
(2.2b), we observe the similarity of form--note  that e x p ( - 2 m o C 0 =  
(q/p)m~ well as the presence of the extra factor K(~, ~). This factor 
reduces to unity when there is no bias (p - -q ) ,  i.e., when c~ = 0. 

The superposition expressed by Eq. (2.12) is valid for the Laplace 
transform of the conditional probability. In terms of the original time 
variable, therefore, the relationship involves a convolution over a memory 
kernel. Although the transform K of this kernel appears to be quite simple, 
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it is not possible to invert it to find the kernel in closed form even for the 
standard Markovian random walk. This also corroborates our earlier 
statement that it does not appear to be feasible to arrive at the reflection 
principle for Po(m, t I m0) by combinatorial methods when a bias is present. 

2.4. The C o n t i n u u m  Case 

It is instructive to look at the form of the reflection principle deduced 
above in the continuum limit of (Markovian) biased diffusion on the half- 
line [0, oo ) with a reflecting boundary at 0. We first set the interval density 
~k(t) = 2 W e x p ( - 2 W t ) ,  where 2W is the constant jump rate out of a site, 
and introduce the lattice spacing a wherever appropriate. Letting W--* oo, 
a--* 0, and p--* q such that the static diffusion constant D = lira Wa 2 and 
the drift velocity c = l i m 2 W a ( p - q )  are finite, leads to the continuum 
limit; e and ~ then approach zero like ( p - q )  and a(c2+4uD)l/2/2D, 
respectively. We then find from (2.12) and (2.13) that the transform of the 
conditional probability density, Po(x, u I Xo) (0 ~ x, Xo < ce ), is expressible 
in terms of the transform P(x, u Ix0) for diffusion on the infinite line 
according to 

Po(X, UlXo)=P(x,  u lXo)+F(c2+4uD) l /2 -~]  
L(c 2 + 4uD ) 1/2 + 

x e-~~ u] -Xo)  (2.14) 

This "reflection principle" may be verified directly by starting with the 
Smoluchowski equation for diffusion with a constant drift, namely, 

(8/8t + c 8/8x -- D 82/8x 2) f (x ,  t) = 0 (2.15) 

subject to the initial condition f ( x ,O)=b(X- Xo) .  The solution in 
( - o  e, or) with natural boundary conditions corresponds to P(x, t { xo), 
and is the usual Gaussian peaked at the point (Xo + ct). The solution (12) 
obeying the boundary condition 

(D 8/8x - c) f (x ,  t) Ix-0 = 0  (2.16) 

corresponds to Po(x, t j Xo). Taking the Laplace transforms of Po(x, t ] Xo) 
and P(x, t fXo), one may verify that they are related as in Eq. (2.14). The 
memory kernel corresponding to the inverse transform of the u-dependent 
coefficient in (2.14) is not a simple one. However, it is evident that the 
behavior of this kernel is characterized by the time scale expected on 
physical grounds, 4D/c 2. 
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3. SOLUTIONS FOR BIASED CTRW's ON FINITE CHAINS 

The relation found in (2.12) completes the set listed in Eqs. (2.2). 
These may now be used to advantage to get closed expressions for 
Po,s(m, u [ mo) and Po,~(m, u [ mo), without again going through the 
lengthy algebra involved in arriving at the solution (2.10) for 
/~O,N(rrt, u I too). 

3.1. Random Walk Between Two Absorbing Boundaries 

Consider a biased CTRW on the set {0, 1,..., N} with absorbing ends 
at 0 and N. Equation (2.2b) is the appropriate reflection principle in this 
case. As the interval is finite, the image set of barrier points is infinite ~2'3) 
because of repeated reflections at the two end points. Using Eq. (2.2b) for 
each point in the image set, we find that ~0,~v can be expressed in terms of 
the infinite chain solution according to 

P0.x(m, u l m o ) =  ~ {exp(-2nN~)P(m, u l m o - 2 n N  ) 
n =  - - c o  

- e xp[ -2~ (mo-nN)]  P(m, u l 2nN-mo)}  (3.1) 

[As the coefficients of P in the above equation are independent of u, the 
Laplace transform may be inverted directly to yield a series solution for 
Po,s(m, t t mo) if required.] Substituting for P from Eq. (2.9) and carrying 
out the summation in (3.t), we obtain 

/3o, s(m , u I m0)= 
2(1 - ~) exp e(m - mo) sinh(m < 4) s inh(N-  m> )4 

u tanh 4 sinh N4 
(3.2) 

From the structure of Po,s in (3.2), it is obvious that the boundary con- 
ditions at 0 and N [Eq. (2.1a)] are satisfied. The solution in (3.2) is often 
sufficient in many applications, and it is not necessary to find 
Po,s(m, t ] m0) explicitly. One such application is discussed in Section 4. 

3.2. Random Walk Between an Absorber and Reflector 

Consider now a biased CTRW on the set {1, 2,..., ( N - 1 ) }  with a 
reflecting boundary at 0 and an absorbing one at N. For this set of boun- 
dary conditions, the appropriate use of both Eq. (2.2b) and Eq. (2.12) is 
necessary. The number of images of the interval is again infinite. However, 
the image of the walker at m o due to reflection at 0 (the reflecting end) is at 
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( - m o  + 1) rather than - m o ,  whereas the image of the walker at m0 due to 
reflection at N (the absorbing end) is at ( 2 N -  mo). Taking account of this 
difference and using Eqs.(2.2b) and (2.12) repeatedly, we find that 
P0,jv(m, u Jm0) can be expressed in the form 

-Po,v(m, u] m0) 

= ~ (-1)"exp(-2enN)K"[P(m, u prno-n(2N- 1)) 
n = O  

+ K exp( - 2~mo) P(rn, u ] - 2nN- m o + n + 1 )] 

+ ~ ( -1 ) "exp (2enN) /C ' - l {exp [ -2c~ (n + mo  - 1)] 
n = l  

x P(m, ul2nN-mo-(n-1))+exp(-2c~n)KP(m, u J2nN+mo-n)} 

(3.3) 

where K has been defined in Eq. (2.13). Once again the summations in 
Eq. (3.3) can be carried out explicitly after using Eq. (2.9) for P. The final 
result for Po,~v is 

Po.N(m, u [ mo) = 2(cosh 4 - cosh 0()[e c~(m- m0) s i n h ( N -  m > )4] 

e ~ sinh m < 4 - sinh(m < - 1 )4 
• (3.4) 

u sinh ~[e ~ sinh N4 - s i n h ( N -  1 )4] 

It is easy to verify that the required boundary conditions at 0 and N 
[Eqs. (2.1c) and (2.1a), respectively] are satisfied by Eq. (3.4). As a further 
check, letting N ~  oo in Eq. (3.4) we recover the solution given earlier in 
Eq. (2.11) for a random walk on a semi-infinite chain with a reflector at 0. 
We have thus obtained expressions for the Laplace transforms of the 
probability distributions for biased CTRW's on finite chains with all three 
possible combinations of boundary conditions. The similarity of structure 
exhibited by these solutions is evident on comparing Eqs. (2.10), (3.2), and 
(3.4). 

3.3. D is t r ibu t ion  of  First Passage T ime for  a Biased C T R W  
on a Fini te Chain 

The results we have obtained in the foregoing enable us to derive quite 
easily an expression for the distribution of the first passage time for a 
biased CTRW on a bounded set of points. 

Consider a biased CTRW on the set { 1, 2,... } with a reflecting boun- 
dary at 0, so that the random walk is bounded from below, without any 
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"leakage." It is required to find the probability Q(m, t I mo) dt that the ran- 
dom walker, starting at the point mo at time 0, reaches the point m (>mo) 
for the first time in the interval (t, t+dt). The characteristic function 
corresponding to the distribution of the time of first passage is the trans- 
form Q(m, u lmo) evaluated at u=ie). In an earlier paper (13) we have 
calculated this quantity for a biased Markovian random walk with the help 
of a renewal principle (14'15) that is specific to a Markov process. For general 
(non-Markovian) CTRW's, other methods (3'4) must be used to obtain Q. 
The most direct way is to observe that if the final point m is regarded as an 
absorbing boundary, Q(m, t I too) may be found from the rate of change of 
the probability of the survival of the walker without absorption according 
to 

rim--1 
Q(m, t l mo)= ~m ~ Po,~(m', t l too) (1 ~<m0<m) (3.5) 

In the preceding section [see Eq. (3.4)], we have computed 
t Po,m(m, u [ m0). Using this result in the transform of Eq. (3.5), we find 

m 1 

O.(m, ulmo) 1--u Z ~ ' = Po,,~(rn, u lmo) 
m ' =  1 

e(m-m~ sinh mo~ - s inh(mo-  1 )~] 
= (m > mo) (3.6) 

]-e ~ sinh m~ - sinh(m - 1 )4] 

This is the characteristic function sought. The moments of the time of first 
passage from mo to m are obtained easily from (3.6). In particular, the 
mean first passage time is given by 

( t , .  o_~ ~ )  = - ( ~ O / e u ) .  ~o  

( p - q )  (m-too) + P [(q/p),,_ (q/p)mO]~ (3.7) 
p--q  ) 

in the case of all CTRW's for which the interval density O(t) has a finite 
first moment 

= tO(t) dt= -[d~(u)ldu],=o (3.8) 

(z is the mean residence time at a site.) 
Equations (3.6) and (3.7) are generalizations of the results derived in 

Ref. 13 for Markovian walks. 
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4. ESCAPE T I M E  D I S T R I B U T I O N S  FOR A B I A S E D  C T R W  

The distribution of the time of escape of the random walker from a 
given region and the corresponding mean exit time find application in a 
variety of physical problems. (3'4'm~8) With the help of the solution obtained 
for Po,~v, it is possible to derive expressions for escape time distributions of 
various kinds for an arbitrary, biased CTRW on the set { 1, 2 ..... ( N -  1)}. 
Let Q~(t; mo) dt be the probability of the escape of the walker from either 
end (0 or N) in the time interval (t, t + dt), for a walk starting from mo 
(1 ~< mo ~< N -  1) at t = 0. As before, analytic continuation of the transform 
Q.e(U; mo) to u = ico yields the characteristic function of the escape time dis- 
tribution. Once again, the escape rate Q~(t; mo) is just the survival rate 
with a change of sign, i.e., 

d N - I  
Q~(t;m~ - d t  ~ Po.~(m, t l mo) (4.1) 

m=l 

o r  

N l 

Qe(u; mo) = 1 -- ~ uPo,~(m, u I mo) (4.2) 
m = l  

Using Eq. (3.2) for P0,N, we get after simplification 

Qe(u; mo) - s i n h ( N -  mo)~ + e Na sinh mo ~ (4.3) 
e m~ sinh N~ 

While this expression has been derived for 1 ~< mo ~< N - 1 ,  it is valid also 
for mo = 0 or N: for, setting mo = 0 or N in it yields Qe(u; 0) = Qe(u; N) = 1, 
which implies that Qe(t; O)= Qe(t; N ) =  r as expected. 

If the origin of the random walk is unspecified, and is thus any one of 
the sites with equal probability, the relevant escape time distribution may 
be defined naturally as 

1 x 
Qe(t)= ~ Qe(t;mo) (4.4) 

N +  1 m0=o 

Our result for Qe(u; mo) then yields the very symmetrical expression 

1 I sinh ~(cosh N~ - cosh Nc~)] 
 e(u) 1 J (4.5) 

The corresponding mean exit (or escape) time from the region (0, N), 
starting with equal probability from any initial point, is given by 

(te> = tQ~(t) dt= -[dQe(u)/du]~= o (4.6) 



822 Khantha and Balakrishnan 

For all CTRW's for which ~ (the mean residence time at a site) is finite, 
Eqs. (4.5) and (4.6) yield 

N~ [N(pU +_ q u ) 1 ] 
(re) = 2 ( N +  1 ) ( p - q )  [_ (pUqU) (p-q) (4.7) 

In the absence of bias, the results for O e and (re)  reduce further to the 
following simple forms: 

tanh(N{o/2)] 
O e ( / ' / ) = ~  l [1-~-tanh(~o/2) _l (4.8) 

where {o = arcsech ~(u), and 

( te)  = IN(N- l)z (4.9) 

A case of special interest is that of escape from either end starting from 
an origin exactly midway between the end points. For convenience, con- 
sider a biased CTRW on the set {-N,...,0,..., +N}, starting from the 
point 0. The transform of the escape time distribution (in an obvious 
notation) is then found to be simply 

Qe( i N ,  u ] 0 )=  (cosh N~)/(cosh Nr (4.10) 

The corresponding mean time of escape from the region ( -  N, N) starting 
from the origin (the mean "exit" time) is (4) found to be 

Nz pNqN) 
( 6 ( + N ) )  - (P _ q~ (~--~ ~-~ (4.11) 

for CTRW's for which r is finite. Once again, in the limit of zero bias, Eqs. 
(4.10) and (4.11) reduce, respectively, to 

and 

0e(+N,  u [ 0)=  sech N{0 (4.12) 

These results show that the mean escape time from a bounded region is 
finite only for those walks for which the first moment ~ of the interval den- 
sity O(t) is finite. When the latter has a long tail, its moments may 
diverge/m It turns out to be necessary to invoke such distributions to 
explain anomalous charge transport in amorphous solids. ~1922) A 
physically interesting, explicit realization of this type of interval density 

(te(+N)) =N2r (4.13) 
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corresponds to a temporally fractal (self-similar) clustering of epoch times 
at which jumps occur: if(t) may then be represented (23) as an infinite super- 
position of exponentials in which the jump rate 2fl k occurs with a 
probability proportional to 7 k, where 0 < fl < 7 < 1 and 2 -1 is a positive 
constant with the dimensions of time. It can be shown that the Laplace 
transform of such a density has a small-u behavior given by 

~)(u) ~=~o 1 + u"K(u) + O(u) (4.14) 

where K(u) is a logarithmic correction to the power law behavior. The 
leading power H is the fractal dimension characterizing the CTRW, and is 
given by 

H = l n  ~,/ln fl (4.15) 

so that 0 < H <  1. Using the asymptotic form (4.14) in Eq. (4.5), the small-u 
behavior of Qe(u) is also found to be 

Qe(u) u~o l + (const) uHK(u) + O(u) (4.16) 

It is then evident from (4.6) that ( t e )  diverges for such CTRW's, even if 
they are biased walks. Writing ( t ~ ) = l i m r ~  ( te )r  where 

( t e ) r  = tQe(t) dt (4.17) 

we find in fact that the divergence has the power law behavior T 1 H as the 
time of observation, T, goes to infinity. In this sense, therefore, such a ran- 
dom walk does not correspond to a true long-range diffusive process. 
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